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Abstract
Background: Human ether‐à‐go‐go‐related gene (hERG) potassium‐channel block 
represents a harmful side effect of drug therapy that may cause torsade de pointes 
(TdP). Analysis of ventricular repolarization through electrocardiographic T‐wave fea‐
tures represents a noninvasive way to accurately evaluate the TdP risk in drug‐safety 
studies. This study proposes an artificial neural network (ANN) for noninvasive elec‐
trocardiography‐based classification of the hERG potassium‐channel block.
Methods: The data were taken from the “ECG Effects of Ranolazine, Dofetilide, 
Verapamil, and Quinidine in Healthy Subjects” Physionet database; they consisted of 
median vector magnitude (VM) beats of 22 healthy subjects receiving a single 500 μg 
dose of dofetilide. Fourteen VM beats were considered for each subject, relative 
to time‐points ranging from 0.5 hr before to 14.0 hr after dofetilide administration. 
For each VM, changes in two indexes accounting for the early and the late phases 
of repolarization, ΔERD30% and ΔTS/A, respectively, were computed as difference 
between values at each postdose time‐point and the predose time‐point. Thus, the 
dataset contained 286 ΔERD30%‐ΔTS/A pairs, partitioned into training, validation, and 
test sets (114, 29, and 143 pairs, respectively) and used as inputs of a two‐layer feed‐
forward ANN with two target classes: high block (HB) and low block (LB). Optimal 
ANN (OANN) was identified using the training and validation sets and tested on the 
test set.
Results: Test set area under the receiver operating characteristic was 0.91; sensitiv‐
ity, specificity, accuracy, and precision were 0.93, 0.83, 0.92, and 0.96, respectively.
Conclusion: OANN represents a reliable tool for noninvasive assessment of the hERG 
potassium‐channel block.
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1  | INTRODUCTION

Block of the human ether‐à‐go‐go‐related gene (hERG) potassium 
channel represents a harmful side effect of drug therapy (Roden, 
2016). The hERG potassium channel carries the rapid compo‐
nent of the delayed rectifier potassium current IKr (outward cur‐
rent), thus playing a key role in cardiac ventricular repolarization 
(Mitcheson, Chen, Lin, Culberson, & Sanguinetti, 2000). Block of 
the hERG potassium channel leads to lower potassium current 
going outside the cardiac cell, longer cardiac myocyte action 
potential duration, longer ventricular repolarization, and conse‐
quently longer QT interval on the electrocardiogram (ECG). This 
phenomenon, known as drug‐induced long QT syndrome (diLQTS), 
could predispose to development of torsade de pointes (TdP), a 
polymorphic ventricular tachycardia. For this reason, investigation 
of the QT‐interval prolongation was used as main hurdle factor 
for evaluation of the existing drugs and development of new ones 
(Mitcheson et al., 2000).

Drugs, such as antiarrhythmics, used to treat cardiovascular dis‐
eases, but also some antibiotics, anticancer agents, antipsychotics, 
and antihistamines, are known to prolong the QT interval (Roden, 
2016). However, among drugs that block the hERG potassium chan‐
nels and prolong the QT interval, some have minimal TdP risk. This 
is attributed to the fact that such drugs cause a multichannel block 
condition, since they block calcium and late sodium channels, beside 
potassium channel (Johannesen, Vicente, Gray, et al., 2014). Block of 
potassium outward current causes an increase in calcium or sodium 
current, leading to early afterdepolarizations, which constitutes a 
trigger for TdP. Thus, concomitant blockage of calcium and late so‐
dium current can avoid early afterdepolarizations, thus resulting in 
a lower TdP risk. Therefore, an investigation based solely on the QT 
interval is not exhaustive to establish TdP risk attributed to a drug. 
A deeper analysis of ventricular repolarization through T‐wave fea‐
tures can more accurately evaluate TdP risk in drug‐safety studies 
(Johannesen, Vicente, Mason, et al., 2014). Recently, an index com‐
bining T‐wave down slope and T‐wave amplitude has been proposed 
as an alternate ECG‐based metric for quantifying the hERG potas‐
sium‐channel block, independently from concomitant calcium and/or 
sodium channels block (De Bie, Chiu, Mortara, Corsi, & Severi, 2017). 
However, evidence showed that the main ECG difference between 
a pure hERG blocker and a multichannel blocker drug is that the for‐
mer prolongs both the early and the late phases of repolarization, 
whereas the latter preferentially shortens early phase of repolariza‐
tion (Johannesen, Vicente, Mason, et  al., 2014). Thus, features de‐
scribing both the early and the late phases of repolarization should 
be combined to provide a comprehensive description of drug effect 
in terms of TdP risk.

The aim of this study was to propose an artificial neural network 
(ANN) for classification of the hERG potassium‐channel block, having 
as inputs ECG‐based T‐wave features on both right and left T‐wave 
sides (with reference to the T‐wave peak) to account for the early 
and the late phases of repolarization. To this aim, ECG acquisitions at 
various time‐points before and after administration of dofetilide, a 

pure hERG blocker with the highest risk of TdP, quantified in 1÷5% of 
exposed subjects (Abraham et al., 2015) were considered.

2  | METHODS

2.1 | Study population and clinical data

The data analyzed in this study are available at the “ECG 
Effects of Ranolazine, Dofetilide, Verapamil, and Quinidine in 
Healthy Subjects” Physionet database (Goldberger et  al., 2000; 
Johannesen, Vicente, Mason, et  al., 2014). The study popula‐
tion consisted of 22 healthy subjects; the inclusion criteria 
(Johannesen, Vicente, Mason, et al., 2014) required subjects to be 
of general good health as determined by a physician, without a 
history of heart disease or unexplained syncope or a family his‐
tory of long QT syndrome; to be 18–35 years of age, weigh at least 
50 kg, and have a body mass index of 18–27 kg/m2; and to be able 
to read and understand the informed consent. In addition, sub‐
jects were excluded if they had more than 10 ectopic beats during 
a continuous 3‐hr ECG recording at screening. Each subject re‐
ceived a single 500 μg dose of dofetilide under fasting conditions 
while undergoing continuous 12‐lead ECG acquisition (sampling 
frequency: 500 Hz; amplitude resolution: 2.5 μV). Triplicate 10‐s 
ECG segments were extracted from the continuous recording, at 
fourteen predefined time‐points: one predose time‐point (−0.5 hr) 
and thirteen postdose time‐points (1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0; 
5.0; 6.0; 7.0; 8.0; 12.0; 14.0 hr). Additionally, at the same 14 time‐
points, a blood sample was drawn for measuring dofetilide plasma 
concentration. Triplicate ECG segments and plasma data are avail‐
able in the Physionet database. All data from Physionet have been 
fully de‐identified and may be used without further independent 
ethics committee approval.

2.2 | Feature extraction from the ECG signal

Each 10‐s 12‐lead ECG segment was transformed into a 10‐s 3‐
Frank‐orthogonal lead ECG segment from which the median beat of 
the vector magnitude (VM) lead was derived (these data are avail‐
able in the Physionet database). Each median VM beat was consid‐
ered representative of the 10‐s ECG segment itself and was used 
for feature extraction. Hence, a total of 924 median VM beats were 
analyzed (22 subjects by 14 time‐points by three ECG recordings).

From each median VM beat, two T‐wave features were selected 
to account for both the early and the late phases of repolarization, 
namely ERD30% (ms) and TS/A (per s). Specifically, ERD30% represents 
the 30% early phase of repolarization duration (Vicente et al., 2015) 
and TS/A is defined as the ratio of down‐going T‐wave slope (TRS, 
mV/s) and T‐wave amplitude (TA, mV), where TRS is defined as the 
absolute value (being a downslope) of the mean first derivative of 
the T wave in the TpTe interval (i.e., time interval between T‐wave 
peak and T‐wave end). ERD30%, TA, and TpTe for each median VM beat 
were directly taken from the Physionet database, whereas TRS and 
TS/A were computed according to their definitions.
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In each subject, ERD30% and TS/A values associated with each of 
the 14 time‐points were computed as the mean value of the three 
measures obtained from triplicate ECG acquisitions. Successively, 
ΔERD30% and ΔTS/A were computed as the difference between the 
corresponding feature values at each of the thirteen postdose time‐
point (1.0–14.0  hr) and the predose control time‐point (−0.5  hr). 
Thus, a total of 286 ΔERD30% and ΔTS/A values were considered.

2.3 | Assessment of the hERG potassium‐channel 
block from plasma measurements

From dofetilide plasma concentration (D) measured at each of the 
thirteen postdose time‐points, the percentage of hERG potassium‐
channel block was estimated from the Hill equation (1):

where IC50 is the drug concentration causing 50% block, and n is 
the Hill coefficient. IC50 and n values were assumed equal to 1 nM 
and 0.6, respectively, as reported in literature (Crumb, Vicente, 
Johannesen, & Strauss, 2016). B(%) values were used to classify 
channel blocks into two classes: high block (HB), when B(%) > 60%, 
and low block (LB), when B(%) ≤ 60%. Eventually, plasma‐based hERG 
potassium‐channel block classification in HB and LB was used as ref‐
erence to train, validate, and test the proposed ANN (see below).

2.4 | Artificial neural network for assessing the 
hERG potassium‐channel block

VM features ΔTS/A and ΔERD30% were used as inputs of a two‐layer 
feedforward ANN (one hidden layer and one output layer) with two 
output neurons, one for each output target class (HB and LB). As for 
the activation function, a sigmoid and a softmax function were used 
in the hidden and in the output layers, respectively (Bishop, 2006). 
Iterative backpropagation training was ensured by the Levenberg–
Marquardt algorithm (Hagan & Menhaj, 1994).

The dataset constituted by the 286 ΔERD30% and ΔTS/A input 
pairs and the corresponding 286 plasma‐based HB\LB output tar‐
gets was partitioned into training set, validation set, and test set ac‐
cording to the following percentages: 40% (114 input pairs and HB\
LB output targets), 10% (29 input pairs and output targets), and 50% 
(143 input pairs and output targets), respectively. Overall, 20 dif‐
ferent ANN structures were considered by progressively increasing 
the number of hidden neurons from 1 to 20. For each structure, 500 
ANN realizations, different for neural initialization, were considered; 
initialization was performed by randomly assigning values to both 
neuron weights and bias. For each ANN realization, training and vali‐
dation values of the area under the receiver operating characteristic 
(ROC) curve (AUCTR and AUCVA, respectively) were used for com‐
puting a weighted AUC defined as:

where weights compensate for different sizes of training and 
validation sets (King & Zeng, 2003). The optimal ANN structure was 
selected as the one characterized by the highest mean (over the 500 
realizations) AUCW value. Eventually, the optimal ANN (OANN) for 
assessing the hERG potassium‐channel block was identified as the 
realization with optimal structure and highest AUCW.

2.5 | Statistics

Normality of ERD30%, TS/A, ΔERD30%, ΔTS/A, B(%) and D distributions 
were evaluated using Lilliefors’ test. Normal feature distributions 
were described in terms of mean ± standard deviation (SD) and com‐
pared with the paired‐sample t test for equal means. Non‐normal 
feature distributions were described in terms of 50th [25th;75th] 
percentiles and compared using the Wilcoxon signed rank test for 
equal medians (i.e., 50th percentile). Statistical significance level was 
set at 0.05 in all cases.

To evaluate goodness of OANN‐based classification, plasma‐
based HB\LB classification was taken as the gold standard. The 
cases classified as HB by both plasma measurements and OANN 
were considered as true positive (TP); the cases classified as LB by 
both plasma measurements and OANN were considered as true 
negative (TN); the cases classified as HB by plasma measurements 
and LB by OANN were considered as false negative (FN); eventu‐
ally, the cases classified as LB by plasma measurements and HB 
by OANN were considered as false positive (FP). Accordingly, to 
evaluate OANN performances, sensitivity (Se), specificity (Sp), ac‐
curacy (Ac), and precision (Pp) were computed in correspondence 
with the optimal operating point (i.e., the point that minimizes er‐
roneous classifications) of the ROC curve relative to the test set 
as follows:

Thus, Se measures the percentage of HB correctly classified 
by OANN with respect to all HB identified by plasma measures; Sp 
measures the percentage of LB correctly classified by OANN with 
respect to all LB identified by plasma measures; Ac measures the 
total percentage of HB and LB correctly classified by OANN; and Pp 
measures the percentage of HB correctly classified by OANN with 
respect to all OANN HB classifications.

(1)B (%)=100 ⋅
Dn

IC
n

50
+Dn

(2)AUCW=0.2 ⋅AUCTR+0.8 ⋅AUCVA

(3)Se=
TP

TP+FN

(4)Sp=
TN

TN+FP

(5)Ac=
TP+TN

TP+TN+FP+FN

(6)Pp=
TP

TP+FP
.
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3  | RESULTS

Feature trends over time (from −0.5 to 14  hr time‐points) are re‐
ported in Table 1 and shown in Figure 1, where individual distribu‐
tions are also depicted. ERD30% was the only feature characterized 
by a non‐normal distribution. Both ERD30% and TS/A were altered by 
the dofetilide administration and reached their maximum difference 
(with respect to their predose levels) at 2.5 hr time‐point (i.e., at the 
time‐point in which both D and B(%) were maximum) to then turn 
toward their basal levels. Differently from TS/A, at 14 hr time‐point, 
ERD30% was still not completely returned to its predose level, and D 
and B(%) were still greater than zero.

According to B(%), training set contained 95 HB cases and 19 LB 
cases, while validation set contained 24 HB cases and 5 LB cases. 
Training and validation sets were used to identify OANN, which was 
characterized by 18 neurons in the hidden layer (Figure 2). When 
applied to the test set, which according to B(%) was composed of 119 
HB cases and 24 LB cases, OANN provided a ROC with an AUC of 
0.91 (Figure 3). The contingency table is reported in Table 2. Values 
of Se, Sp, Ac, and Pp were 0.93, 0.83, 0.92, and 0.96, respectively.

4  | DISCUSSION

This study proposed an ANN‐based model for classification of the 
hERG potassium‐channel block based on ECG features character‐
izing the T wave. Specifically, two features, namely ERD30% and 
TS/A, were used as ANN input. ANN‐based classification of the 
hERG block was made in terms of high‐ (HB) and low‐ (LB)  block 
percentage, using 60% block as threshold. Eventually, OANN was 
identified by using ECG data recorded at different time‐points from 
dofetilide administration (from −0.5 to 14 hr) and by comparing the 

ANN‐based hERG block classification against classification from the 
plasma measurements, the latter used as the gold standard.

Pharmacokinetics as well as features trends over time have 
been shown not to differ considerably among subjects (Figure  1), 
thus confirming that ECG‐based features are adequate ANN input 
features to discriminate high from low block. As for the input fea‐
ture selection, ERD30% and TS/A were chosen among all the features 
that are known to correlate with the hERG channel block, namely 
TS/A, TpTe, ERD30%, and LRD30% (i.e., 30% late repolarization delay) 
(De Bie et al., 2017; Vicente et al., 2015). Additionally, ECG features 
showing correlation with blood potassium concentration were also 
investigated, since hERG block and hypokalemia result in similar 
outcomes in terms of QT‐interval prolongation and reduced T‐wave 
amplitude (De Bie et al., 2017; Diercks, Shumaik, Harrigan, Brady, & 
Chan, 2004). The list of features correlating with blood potassium 
concentration included TRS, TA, TCOG (i.e., T‐wave center of gravity) 
and T/RA (i.e., the ratio between the amplitude of T and R waves), 
as well as TS/A (Corsi et al., 2017; Dillon et al., 2015). Thus, TS/A was 
chosen since it is a strong predictor of both hERG channel block and 
blood potassium level (De Bie et al., 2017). Being TS/A a reliable de‐
scriptor of the late phase of repolarization, ERD30% was chosen as an 
independent (from multicollinearity testing) ECG feature related to 
the early phase of repolarization. Indeed, both the early and the late 
phases of repolarization are known to be affected by hERG block 
(Johannesen, Vicente, Mason, et  al., 2014). With respect to TS/A, 
which returns to pre‐administration values within 12 hr, alterations 
in ERD30% last longer and follow the persistent hERG block (as de‐
tected by plasma measurements) for at least 14  hr (Table  1). This 
observation suggests that dofetilide, as pure hERG blocking drug, 
affects more early than late phase of repolarization, thus corrobo‐
rating significance of ERD30%, in addition to TS/A in the classification 
of hERG block.

Time‐points (hr) D (nmol/L) B(%) ERD30% (ms) TS/A (per s)

−0.5 0.00 ± 0.00 0.00 ± 0.00 43.0 [41.3;46.7] 11.29 ± 0.93

1.0 3.30 ± 1.65***  63.84 ± 11.41***  47.7 [44.7;54.7]***  10.16 ± 1.32*** 

1.5 4.17 ± 1.15***  69.49 ± 4.37***  55.8 [49.7;62.0]***  9.04 ± 1.22*** 

2.0 5.47 ± 0.79***  73.33 ± 1.80***  61.2 [57.0;72.7]***  7.93 ± 1.59*** 

2.5 5.96 ± 0.78***  74.34 ± 1.58***  63.0 [57.3;69.3]***  6.67 ± 2.01*** 

3.0 5.58 ± 0.68***  73.62 ± 1.48***  62.0 [55.3;75.3]***  7.14 ± 1.91*** 

3.5 4.81 ± 0.69***  71.80 ± 1.87***  61.2 [56.0;74.0]***  8.05 ± 1.51*** 

4.0 4.75 ± 0.71***  71.64 ± 1.89***  60.3 
[53.3;63.3]*** 

7.94 ± 1.65*** 

5.0 3.86 ± 0.45***  69.13 ± 1.49***  54.2 [51.0;62.3]***  8.40 ± 1.75*** 

6.0 3.68 ± 0.54***  68.45 ± 2.01***  56.7 [52.3;66.7]***  8.84 ± 1.99*** 

7.0 3.13 ± 0.44***  66.31 ± 1.90***  53.7 [51.3;63.7]***  9.41 ± 1.53*** 

8.0 2.73 ± 0.34***  64.50 ± 1.70***  53.3 [47.0;58.3]***  9.61 ± 1.64*** 

12.0 1.62 ± 0.22***  57.00 ± 2.07***  45.3 [43.3;50.7]**  10.85 ± 1.20* 

14.0 1.40 ± 0.35***  54.56 ± 3.35***  44.5 [42.0;49.3]*  11.06 ± 1.49

*p < .05; **p < .01; ***p < .001 when comparing postdose vs predose levels.

TA B L E  1   Electrocardiographic and 
plasma‐feature trends over time (from 
−0.5 to 14 hr time‐points)
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The OANN classification of the hERG block was performed by 
using individual differences in T‐wave morphology from their base‐
line values and not their absolute values. Indeed, we know from lit‐
erature (Vicente et  al., 2015) that changes in T‐wave morphology 
could provide specific information to discriminate between high and 
low risk of torsade de pointes. Thus, we had to refer to changes with 
respect to baseline values (ΔERD30% and ΔTS/A values) and not to 
their actual values (ERD30% and TS/A).

ECG‐based hERG block classification is noninvasive and thus 
preferable over plasma‐based hERG block classification. However, 
being based on ECG features, it can be performed only in the time 
interval during which the presence of the drug causes ECG changes 
(particularly T‐wave changes, being ERD30% and TS/A used as input 
features of OANN). Such interval does not necessarily match the 
time interval needed by the drug to be completely washed out. In 
the present study, dofetilide was used, and OANN performance was 
evaluated in the time interval going from 1 to 14 hr after dofetilide 
administration (Table 1). Indeed, no important pharmacokinetic issue 
occurred in this time interval, being dofetilide distribution into the 
effect compartment already completed after 1  hr and total elimi‐
nation of the drug not yet reached at 14 hr after oral administration 
(Lenz & Hilleman, 2000) (Table 1).

OANN was efficient in detecting high hERG block (Se = 0.93 in the 
test set). A little less efficient performance was provided by OANN 
when detecting low hERG block (Sp = 0.83 in the test set). However, 
this result could be due to the low number of LB cases in the dataset 
(overall, 48 LB cases out of 286, with only 24 cases in the test set, as by 
plasma‐based classification, Table 2). Overall, OANN showed good HB\
LB classification performances (Ac = 0.92 and Pp = 0.96 in the test set).

The results of this study demonstrate that OANN reliably as‐
sesses hERG block in the presence of pure hERG blocking drugs, such 
as dofetilide. Indeed, pure hERG blocking drugs affect both the early 
and the late phases of repolarization (Johannesen, Vicente, Mason, 
et al., 2014). Other drugs causing multichannel block were shown to 
shorten only the early phase of repolarization (Johannesen, Vicente, 
Mason, et  al., 2014). The ability of OANN in discriminating hERG 
block in multichannel block condition will be investigated in future 
studies. However, being ERD30% a descriptor of the early phase of 
repolarization and being TS/A already tested in multichannel block 
conditions, it is reasonable to hypothesize that the proposed OANN‐
based model could be a reliable tool also in this condition.

Level of hERG potassium‐channel block may increment the risk 
of torsade de pointes (Roden, 2016). Thus, availability of methods 
for automatic assessment of the hERG potassium‐channel block 
based on changes (with respect to baseline) in T‐wave features may 

F I G U R E  1   Individual (gray lines) and mean/median (black 
lines) distributions of the features over time; D (nmol/L), dofetilide 
plasma concentration (panel a); B(%), percentage of hERG 
potassium‐channel block (panel b); ERD30% (ms), 30% early phase 
of repolarization duration (panel c); and TS/A (per s), ratio of down‐
going T‐wave slope and T‐wave amplitude (panel d)
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support assessment of cardiovascular risk during some medical 
treatments (pharmacological or not), such as hemodialysis, in which 
abnormal fluctuations of the potassium concentration occur.

This study uses ANN for classification of the hERG potassium‐
channel block after dofetilide administration in healthy subjects. 
Future studies will investigate validity of this method when applied 
to patients, possibly with abnormal T waves. Still, we can speculate 
the method to work also in patients if T‐wave variations are analo‐
gous to those in healthy subjects, independently from their initial 
T‐wave morphology.

In conclusion, this study proposes OANN as a reliable model for 
noninvasive assessment of the hERG potassium‐channel block. This 
new model focuses on characterization of the hERG block based 
on T‐wave changes and was able to reliably classify hERG block in 
two classes: HB and LB. OANN neuron weights and biases were not 
reported here; however, they are available for research studies by 
directly contacting the corresponding author (Prof. Laura Burattini, 
l.burattini@univpm.it).
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F I G U R E  2  The optimal artificial neural network (OANN) for the classification of hERG block. OANN is fed by two differential 
electrocardiographic features (ΔTS/A and ΔERD30%) and is characterized by two layers: the hidden layer, characterized by 18 neurons, and the 
output layer, characterized by 2 neurons for hERG block classification in two classes, high block (HB; higher than 60%) and low block (LB; not 
overcoming 60%)

F I G U R E  3   Receiver operating characteristic (ROC) obtained 
by applying the optimal artificial neural network (OANN) to the 
test set (N = 143). Area under the curve (AUC) is 0.91; Se and Sp 
in correspondence with the optimal point (*) are 0.93 and 0.83, 
respectively

TA B L E  2   Contingency table for evaluating classification in 
high‐block (HB) and low‐block (LB) classes based on the optimal 
artificial neural network (OANN) against that based on plasma 
measurements, taken as gold standard

 

Plasma‐based 
classification

HB LB TOT

OANN‐based classification HB 110 4 114

LB 9 20 29

TOT 119 24 143
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